Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope.
نویسندگان
چکیده
Escherichia coli bacteria have been observed to swim along a glass surface for several minutes at a time. Settling velocities of nonmotile cells and a computer simulation of motile cells confirmed that an attractive force kept the bacteria near the surface. The goal of this study was to evaluate whether this attractive force could be explained by reversible adhesion of E. coli to the surface in the secondary energy minimum, according to the theory of Derjaguin, Landan, Verwey, and Overbeek (DLVO theory). This theory describes interactions between colloidal particles by combining attractive van der Waals forces with repulsive electrostatic forces. A three-dimensional-tracking microscope was used to follow both wild-type and smooth-swimming E. coli bacteria as they interacted with a glass coverslip in media of increasing ionic strengths, which corresponded to increasing depths of the secondary energy minimum. We found no quantifiable changes with ionic strength for either the tendencies of individual bacteria to approach the surface or the overall times bacteria spent near the surface. One change in bacterial behavior which was observed with the change in ionic strength was that the diameters of the circles which the smooth-swimming bacteria traced out on the glass increased in low-ionic-strength solution.
منابع مشابه
Interaction of Thallium (I) with Cytidine 5-Monophosphate in Different Ionic Strengths and Various Media
The formation constants of the species formed in the systems H+ + cytidine 5-monophosphate (CMP)and H+ + cytidine 5-monophosphate + Tl (I) ion have been determined in aqueous solution in a widepH range of 1.5 to 10.5 at 25 °C and different ionic strengths ranging from 0.1 to 1.5 moldm-3NaClO4, NaNO3, and NaCl using potentiometric-spectrophotometric technique. The composition ofthe complexes was...
متن کاملReversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy.
The initial events in bacterial adhesion are often explained as resulting from electrostatic and van der Waals forces between the cell and the surface, as described by DLVO theory (developed by Derjaguin, Landau, Verwey, and Overbeek). Such a theory predicts that negatively charged bacteria will experience greater attraction toward a negatively charged surface as the ionic strength of the mediu...
متن کاملSpectrophotometric Determination of Protonation Constants of T ry p to ph an at Different Ionic Strengths and Various Ionic Media
The prtnonation constant values of tryptophan were studied at 25 C. different ionic strengths. 0.1-1.0 moldm", and various ionic media of NaCIO, and N4N01, using a combination of spectrophotometrie andpotentiometric techniques. The general vend for the two protonation con Slant Vai net of tryptophan is in theorder of NaC104 > NaNO3 in different ionic media. The dependence of protonation constan...
متن کاملApplication of a dual deposition mode model to evaluate transport of Escherichia coli D21 in porous media
[1] Controlled laboratory-scale column deposition experiments were conducted using a well-characterized mutant of the Escherichia coli (E. coli) K12 strain to obtain insight into the mechanisms that give rise to the observed deviation from classical colloid filtration theory (CFT). Both the suspended effluent bacteria concentration and the spatial distribution of retained bacteria were systemat...
متن کاملParticle Deposition onto Solid Surfaces with Micropatterned Charge Heterogeneity: The “Hydrodynamic Bump” Effect
A radial stagnation-point flow cell utilizing an optical microscope and an image-capturing device was used to directly observe the deposition kinetics of colloidal particles onto micropatterned glass surfaces with well-defined surface charge features. Surface charge heterogeneity was microfabricated onto glass surfaces by silanizing specified regions of the glass surface by a soft lithographic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 63 9 شماره
صفحات -
تاریخ انتشار 1997